Vertex normals and face curvatures of triangle meshes

An optional description of the image for screen readers. By Caigui Jiang

Abstract

This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ‘normal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

Publication
In A. Bobenko, editor, Advances in Discrete Differential Geometry
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Click the Slides button above to demo Academic’s Markdown slides feature.

Supplementary notes can be added here, including code and math.

Caigui Jiang
Caigui Jiang
Professor

My research interests are in geometric modeling, geometry processing, architectural geometry, computer graphics, and computer vision.